If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+30x-19=0
a = 30; b = 30; c = -19;
Δ = b2-4ac
Δ = 302-4·30·(-19)
Δ = 3180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3180}=\sqrt{4*795}=\sqrt{4}*\sqrt{795}=2\sqrt{795}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{795}}{2*30}=\frac{-30-2\sqrt{795}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{795}}{2*30}=\frac{-30+2\sqrt{795}}{60} $
| 2²x-10x2x+16=0 | | 3^3b+6=3b+6 | | 2^5=6b+2 | | x+2x/3=60 | | 2y+6=-5y-6 | | 4r^2r+1=0 | | 4r2-2r+1=0 | | 4=b^2-3b | | 10-5x3=-5 | | (65+7)(3x-2)=24 | | 16-3a=7 | | 2x²-32x+126=0 | | X^3-5x^2-7x-3=0 | | -6=8y | | x³-x²-22x+46=0 | | X=4x40 | | 9x–10=64 | | 52=-v+22 | | 6^x=3,6 | | 9=8-2x | | -x-6=-4x | | V(x)=(21-2x)*(21-2x)*x | | c=c+4/9 | | 2(p+6)=20 | | 12/15=n/60= | | -24.5x^2+63.7x-29.4=0 | | 6x+13=3-4x | | 9y-8y=+20 | | 4X-12x-36=0 | | 3x+25-10x=11 | | 4*x+200=500 | | X+0,5x=9 |